Skip to content

suite2p ROI classification

Compute Credits

This tool uses 2.0 compute credits per hour.

Overview

This suite2p ROI classification tool is a wrapper for the suite2p function classification.classify().
You can find more information on this processing step in the suite2p docs.

suite2p ROI classification curates extracted ROIs, potentially belonging to different cell compartments (cell body aka soma, dendrites, and axon), using either a built-in classifier or a user-provided one, to only keep cell bodies (aka somata) for further analyses.
Note that this tool constitutes the fifth step of Run suite2p pipeline.

Input files

Source Parameter File Type File Format
Extraction Statistics File suite2p_data npy
Parameters File config npy
Optional Classifier File suite2p_classifier npy

Parameters

Parameter suite2p name Required? Default Description
Extraction Statistics File - True N/A Input cell statistics file, as outputted by the ROI extraction step [.npy]
Parameters File - True N/A Input suite2p parameters file, as outputted by the ROI extraction tool [.npy]
Optional Classifier File classifier_path False N/A [from suite2p docs] "Path to classifier file you want to use for cell classification." [.npy]
Soma Crop soma_crop False True [from suite2p docs] "Specifies whether to crop dendrites for cell classification stats (e.g., compactness)." [bool]
FOV vmin Percentile - False 0 Minimum value for the colormap range, as percentile of the FOV fluorescence [float, [0 )]
FOV vmax Percentile - False 99 Maximum value for the colormap range, as percentile of the FOV fluorescence [float, ( 100]]
FOV Colormap - False plasma Colormap for plotting the FOV [str]
Show Grid on FOV - False True Whether or not to show the grid on FOVs [bool]
FOV Ticks Step - False 128 Step for the x- and y-ticks [int, >0]

Output files

File name File type Notes
iscell.npy NumPy file Contains classification labels for all extracted ROIs, as a 1D array.
ops_ROI_classification.npy NumPy file Contains a dictionary of parameters populated by suite2p ROI classification.

You can explore 2 preview figures for iscell.npy.
You can find below an example of these previews obtained from processing a 5-minute 2P movie of mouse cortex (data courtesy of Dr. Ahmet Arac, MD, at UCLA):

Projection images and detected ROIs.
Accepted ROIs footprints.